

EV8-12S1509

IGBT 驱动器

产品描述

EV8-12S1509 是自带隔离电源的混合集成型 IGBT 驱动器,可应用于任何需要栅极放大驱动的场合,通过光耦为驱动信号提供必要的电气隔离,并采用检测 IGBT 的集电极欠饱和压降的方法来实现应用电路的过流及短路保护功能。当故障保护功能动作时,产品可输出故障信号。

产品特点

- 内建 DC/DC 隔离电源、单电源供电
- 高隔离电压: 3750VAC
- 输入信号频率最高可达 20kHz
- 故障保护和故障反馈功能
- 故障保护后封锁输出信号并定时复位
- 故障检测抑制时间(盲区)可调
- 故障软关断时间可调
- SIP 封装

应用领域

- 通用变频器
- 交流伺服驱动系统
- 不间断电源(UPS)
- 电焊机

可匹配的 IGBT:

- 600V 系列 IGBT (电流≤600A)
- 1200V 系列 IGBT (电流≤400A)
- 1700V 系列 IGBT (电流≤200A)

选型表

		输入电压(VDC)		最大容性负载		
认证	产品型号		输出高电平电压 VOH(VDC)	输出低电平电压 VOL(VDC)	最大驱动电流(A)	取入各任贝牧 (uF)
EN/BS E	N EV8-12S1509	12	15	-9	±8	2200

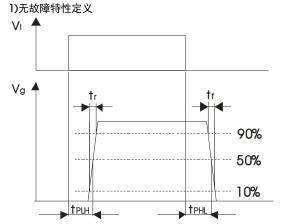
最大允许值

项目	符号	测试条件	数值	单位
供电电源输入电压	V_D	DC	13	V
输入脉冲高电平电流	I_{IH}	端子 3~4 之间	25	mA
驱动输出电压	V_o	输入信号为高	VCC	V
75-444 Just 12-48	I_{gon}	脉宽 2us	+8	
驱动输出电流峰值	I_{goff}	频率 f=20kHZ	-8	A
故障输出电流	I_{fo}		20	mA
故障保护检测端耐压	V_{R1}	端子 13 输入电压	50	V

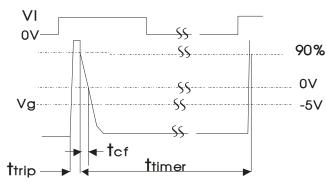
EV8-12S1509

IGBT 驱动器

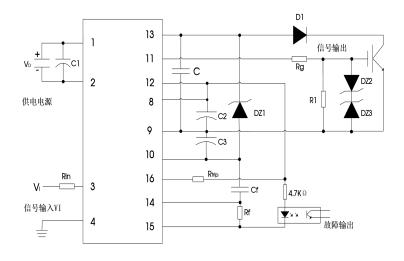
产品特性


产品特性		项目	符号	测试条件	Min.	Тур.	Max.	单位
输入 特性	供电电源		V_D		11.6	12	12.4	V
	最大输入电流		I_{In}			180	290	mA
	高电平信号输入电流		$I_{I\!H}$		10	16	20	mA
	隔离电源电压		V_{cc}	V _D =12V	14.5	-	18	V
			$V_{\scriptscriptstyle EE}$	V _D =12V	-7	-	-10	
输出		高电平电压	V_{OH}	PIN9与PIN11接10kΩ电阻	13.5	15.0	17.0	V
特性	驱动输	低电平电压	V_{OL}	PIN9 与 PIN11 接 10k Ω 电阻	-6	-9	-10	
	出	上升时间	t_r	I _{IH} =10mA		0.3	1	us
		下降时间	t_f	I _{IH} =10mA		0.3	1	
	工作频率		f				20	kH
	输入脉 冲与驱 动输出	上升延迟时间	$t_{\scriptscriptstyle PLH}$	I _{IH} =10mA		0.5	1	us
		下降延迟时间	t _{PHL}	I _H =10mA	-	1	1.3	
	故障检测抑制时间		t _{trip}	V _D =12V,故障保护功能动作		1.6	-	
	故障软关断时间		t_{cf}	V _D =12V,故障保护功能动作		4.5	-	
	故障复位时间		$t_{ m timer}$	保护信号开始到结束的时间	1	1.4	2	m
通用	故障阈值电压		V_{ocp}	V _D =12V		9.5		V
特性	短路保护检测电压		V_{sc}	模块集电极电压	15			
	故障输出电流		I_{FO}	15 脚输入电流,R =4.7k Ω		5		m/
	门极电阻		R_g		2			Ω
	隔离电压		V_{iso}	正弦 50Hz/60Hz, 1分钟,漏电流<1mA			3750	VAC
	工作温度		T_{op}		-40		70	· °C
	存储温度		T_{st}		-50		125	
	重量		W			6.0		g
	安全等级					CLA	SS III	

EV8-12S1509


IGBT 驱动器

应用设计参考


1.特性定义

2)故障特性定义

2.典型应用电路

V _D	12V	
Vı	5V±5%	
C1	100µF/35V(低内阻电解电容)	
C2	100µF/35V(低内阻电解电容)	
C3	100µF/35V(低内阻电解电容)	
Ctrip	根据需要设定(可不接)	
Cf	根据需要设定(可不接)	
Rf	根据需要设定(可不接)	
Rg	5 Ω	
R1	10k Ω 0.25W	
DZ1	TVS 管(30V,0.5W)	
DZ2、DZ3	TVS 管(18V,1W)	
D1	快恢复二极管(trr≤0.2µs)	

注: 1. 可在电容 C2 和 C3 两端分别并联一个容值在 1uF-10uF 的陶瓷电容, 以降低纹淬噪声。

2.若输入脉冲电压过大导致输入脉冲电流过大时可调节限流电阻以满足输入脉冲电流的要求。信号输入端之间电路为高速光耦的 LED 和 $150\,\Omega$ 电阻串联而成。所以 Rin 可根据下列公式计算:

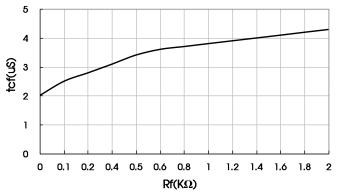
$$R_{in} = \frac{V_I - 1.7V}{16mA} - 150\Omega$$

3. 如应用环境较差,可在 9 脚和 13 脚之间酌情增加一个陶瓷电容 C,推荐容值 0.1uF,实际还需要结合客户应用环境选型。

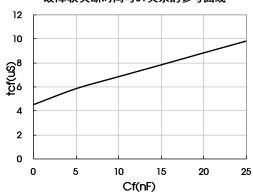
4. D1 需根据母线电压不同选取不同的耐压值,一般大于等于母线电压的 2 倍,实际还需要结合客户应用环境选型。

1)故障软关断时间调整:

当应用电路发生短路或过流时,驱动器保护电路开始工作,并缓慢关断 IGBT。默认软关断时间为 4.5µs,如需要调节,可以通过外接 Rf 减小软关断时间,外接 Cf 增加软关断时间。可调节范围为 2.5us-10us。具体调整可参考下表。(表内数据仅作参考,实际应用需实测)

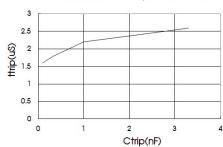


EV8-12S1509


IGBT 驱动器

	故障软关断时间调节参考表						
$Rf(k\Omega)$	tcf(µs)	Cf(nF)	tcf(µs)				
_	4.5	_	4.5				
1.5	4.0	1	4.9				
0.5	3.5	3.3	5.3				
0.3	3.0	10	6.5				
0.11	2.5	22	9.3				

故障软关断时间与Cf关系的参考曲线

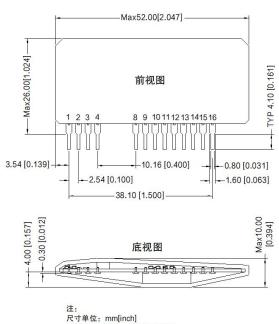


2)故障检测抑制时间调整:

当应用电路发生短路或过流时,驱动器从检测到短路或过流到栅极电位下降到正常幅值的90%,这段时间被称为故障检测抑制时间,本驱动器内部 设定了最小的故障检测抑制时间,可以通过外接 Ctrip 电容来调整故障检测抑制时间。最大可以调至 3.5us。具体调整可参考下表。(表内数据仅作参考, 实际应用需实测)

故障检测抑制时间调节参考表				
Ctrip (nF)	ttrip (µs)			
	1.6			
0.10	1.8			
0.33	2.0			
2.20	2.4			
3.30	2.8			

故障检测抑制时间与Ctrip关系的参考曲线



第三角投影 🕀 🗔

EV8-12S1509

IGBT 驱动器

外观尺寸、建议印刷版图

引脚方式 引脚 功能 引脚 功能 驱动信号输出 电源输入正 11 2 电源输入负 12 内部功率管集电极 驱动信号输入正 3 13 过流或短路故障输入 4 驱动信号输入负 14 软关断时间调节 8 隔离正电源输出 15 故障信号输出 9 隔离电源输出公共端 16 短路抑制(盲区)时间调节

顶视图

注: 栅格距离 2.54*2.54mm

Ø1.30 [Ø0.051]

隔离负电源输出

10

端子截面公差: ±0.10[±0.004] 未标注公差: ±0.50[±0.020]

注:

- 1.最大容性负载均在输入电压范围、满负载条件下测试;
- 2.驱动器到 IGBT 栅极和发射极的连线要尽量短,最长不超过 1 米;
- 3.驱动器到 IGBT 栅极和发射极的连线建议采用双绞线;
- 4.为减小 IGBT 关断瞬间在集电极产生的高电压尖峰,建议适当增加栅极电阻阻值;
- 5.对于需要调节故障软关断时间及故障检测抑制时间的,外接电容或电阻需尽量靠近驱动器,同时需注意取值不可超出建议范围值;
- 6.C2 与 C3 要尽量选用低内阻的电解电容同时要尽可能的靠驱动器放置;
- 7.PIN13 连接到 IGBT 集电极的快恢复二极管 D1 的耐压值必须高于 IGBT 关断时集电极所承受的峰值电压;
- 8.由于 D1 的反向恢复特性, 当其反向恢复时间较长时, PIN13 可能承受较高的电压, 从而损坏驱动器。因此, 建议在 PIN13 与 PIN10 端加入 30V TVS 管 DZ1;
- 9.如不需故障保护电路,可以在 PIN13 与 PIN9 之间接 $4.7k\Omega$ 电阻(D1 与 DZ1 在此电路中不需要);
- 10.本文数据除特殊说明外,都是在 Ta=25℃,湿度<75%RH,输入标称电压和输出额定负载,且 Rg=5Ω 时测得;
- 11.本文所有指标测试方法均依据本公司企业标准;
- 12.以上均为本手册所列产品型号之性能指标,非标准型号产品的某些指标会超出上述要求;
- 13.产品涉及法律法规:见"产品特点";
- 14.我司产品报废后需按照 ISO14001 及相关环境法律法规分类存放,并交由有资质的单位处理。
- 15.包装包编号: 58220510V